449 research outputs found

    An Improved Excitation Matching Method based on an Ant Colony Optimization for Suboptimal-Free Clustering in Sum-Difference Compromise Synthesis

    Get PDF
    Dealing with an excitation matching method, this paper presents a global optimization strategy for the optimal clustering in sum-difference compromise linear arrays. Starting from a combinatorial formulation of the problem at hand, the proposed technique is aimed at determining the sub-array configuration expressed as the optimal path inside a directed acyclic graph structure modelling the solution space. Towards this end, an ant colony metaheuristic is used to benefit of its hill-climbing properties in dealing with the non-convexity of the sub-arraying as well as in managing graph searches. A selected set of numerical experiments are reported to assess the efficiency and current limitations of the ant-based strategy also in comparison with previous local combinatorial search methods. (c) 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Ant Colony Based Hybrid Approach for Optimal Compromise Sum-Difference Patterns Synthesis

    Get PDF
    Dealing with the synthesis of monopulse array antennas, many stochastic optimization algorithms have been used for the solution of the so-called optimal compromise problem between sum and difference patterns when sub-arrayed feed networks are considered. More recently, hybrid approaches, exploiting the convexity of the functional with respect to a sub-set of the unknowns (i.e., the sub-array excitation coefficients) have demonstrated their effectiveness. In this letter, an hybrid approach based on the Ant Colony Optimization (ACO) is proposed. At the first step, the ACO is used to define the sub-array membership of the array elements, while, at the second step, the sub-array weights are computed by solving a convex programming problem. The definitive version is available at www3.interscience.wiley.co

    Computationally-Effective Optimal Excitation Matching for the Synthesis of Large Monopulse Arrays

    Get PDF
    Antenna arrays able to generate two different patterns are widely used in tracking radar systems [1]. Optimal (in the Dolph�]Chebyshev sense) sum [2] and difference patterns [3] can be generated by using two independent feed networks. Unfortunately, such a situation generally turns out to be impracticable because of its costs, the occupied physical space, the circuit complexity, and electromagnetic interferences. Thus, starting from the optimal sum pattern a sub�]optimal solution for the difference pattern is usually synthesized by means of the sub�]array technique. The array elements are grouped in sub�]arrays properly weighted for matching the constrains of the difference beam. Finding the best elements grouping and the sub�]array weights is a complex and challenging research topic, especially when dealing with large arrays. As far as linear arrays are concerned, McNamara proposed in [4] an analytical method for determining the �gbest compromise�h difference pattern. Unfortunately, when the ratio between the elements of the array and sub�]arrays increases, such a technique exhibits several limitations mainly due to the ill�]conditioning of the problem and the computational costs due to exhaustive evaluations. A non�]negligible saving might be achieved by applying optimization algorithms (see for instance [5] and [6]) aimed at minimizing a suitable cost function. Notwithstanding, optimization�]based approaches still appear computationally expensive when dealing with large arrays because of wide dimension of solution space to be sampled. In order to properly deal with these computational issues, this contribution presents an innovative approach based on an optimal excitation matching procedure. By exploiting the relationship between independently�]optimal sum and difference patterns, the dimension of the solution space is considerably reduced and efficiently sampled by taking into account the presence of array elements more suitable to change sub�]array membership. In the following, the proposed technique is described pointing out, through a representative case, its potentialities and effectiveness in dealing with large arrays. This is the author's version of the final version available at IEEE

    An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations

    Get PDF
    An innovative approach for the optimal matching of independently optimum sum and difference patterns through sub-arrayed monopulse linear arrays is presented. By exploiting the relationship between the independently optimal sum and difference excitations, the set of possible solutions is considerably reduced and the synthesis problem is recast as the search of the best solution in a non-complete binary tree. Towards this end, a fast resolution algorithm that exploits the presence of elements more suitable to charge sub-array membership is presented. The results of a set of numerical experiments are reported in order to validate the proposed approach pointing out its effectiveness also in comparison with state-of-the-art optimal matching techniques. (c) 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Human variation in the shape of the birth canal is significant and geographically structured.

    Get PDF
    The human birth canal shows a tight fit with the size of the neonate, which can lead to obstetric complications. This is not the case in other apes, and has been explained as the outcome of conflicting evolutionary pressures for bipedal locomotion and parturition of a highly encephalized fetus. Despite the suggested evolutionary constraints on the female pelvis, we show that women are, in fact, extremely variable in the shape of the bony birth canal, with human populations having differently shaped pelvic canals. Neutral evolution through genetic drift and differential migration are largely responsible for the observed pattern of morphological diversity, which correlates well with neutral genetic diversity. Climatic adaptation might have played a role, albeit a minor one, with populations from colder regions showing a more transversally oval shape of the canal inlet. The significant extent of canal shape variation among women from different regions of the world has important implications for modern obstetric practice in multi-ethnic societies, as modern medical understanding has been largely developed on studies of European women

    Range Sizes of the World's Mammals, Birds, and Amphibians from the Mid-Holocene to the Industrial Period.

    Get PDF
    Anthropogenic land use and climate change in the Industrial age have had substantial impacts on the geographic ranges of the world's terrestrial animal species. How do these impacts compare against those in the millennia preceding the Industrial era? Here, we combine reconstructions of global climate and land use from 6000 BCE to 1850 CE with empirical data on the spatial distributions and habitat requirements of 16,919 mammal, bird, and amphibian species to estimate changes in their range sizes through time. We find that land use had only a small, yet almost entirely negative impact during most of the study period, whilst natural climatic variability led to some range expansions and contractions; but, overall it had a small impact on the majority of species. Our results provide a baseline for comparison with studies of range changes during the Industrial period, demonstrating that contemporary rates of range loss exceed the magnitude of range changes seen over many thousands of years prior to the Industrial period by an alarming extent

    The evolution of parental care in insects: A test of current hypotheses.

    Get PDF
    Which sex should care for offspring is a fundamental question in evolution. Invertebrates, and insects in particular, show some of the most diverse kinds of parental care of all animals, but to date there has been no broad comparative study of the evolution of parental care in this group. Here, we test existing hypotheses of insect parental care evolution using a literature-compiled phylogeny of over 2000 species. To address substantial uncertainty in the insect phylogeny, we use a brute force approach based on multiple random resolutions of uncertain nodes. The main transitions were between no care (the probable ancestral state) and female care. Male care evolved exclusively from no care, supporting models where mating opportunity costs for caring males are reduced-for example, by caring for multiple broods-but rejecting the "enhanced fecundity" hypothesis that male care is favored because it allows females to avoid care costs. Biparental care largely arose by males joining caring females, and was more labile in Holometabola than in Hemimetabola. Insect care evolution most closely resembled amphibian care in general trajectory. Integrating these findings with the wealth of life history and ecological data in insects will allow testing of a rich vein of existing hypotheses.We thank S. T. Trumbo, D. Lukas, and T. L. Gluckman for advice and helpful comments on the manuscript; K. Isvaran, S. Qader, S. Ho, L. Revell, R. Maia, R. FitzJohn, and A. Meade for invaluable statistical advice; A. Seago, G. Dury, B. Kranz, and L. A. Mound for points of information; andO.F. Time for solving all problems. This studywas funded by BBSRC studentship 02/A1/S/8091 to JDJG. The authors declare no conflicts of interest.This is the final published version. It was first made available by Wiley at http://onlinelibrary.wiley.com/doi/10.1111/evo.12656/suppinfo
    corecore